POINT AND LINE

First, we will introduce you with basic formulas and their applications:

1. The distance between two points

If they give us points $A(x_1, y_1)$ i $B(x_2, y_2)$, then the distance between them is:

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 1.

Determine the length of the triangle page if we have A(1,1), B(4,1) i C(1,5)

One note: it does not matter whether you mark d (A, B) or d (B, A) because the solution is the same!

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(A,B) = \sqrt{(4-1)^2 + (1-1)^2} = \sqrt{9+0} = 3$$

$$d(A,C) = \sqrt{(1-1)^2 + (5-1)^2} = \sqrt{0+16} = 4$$

$$d(B,C) = \sqrt{(1-4)^2 + (5-1)^2} = \sqrt{9+16} = 5$$

2. Long division in a given relation

If the point $M(x_{\lambda}, y_{\lambda})$ is internal point of long-AB, where are $A(x_1, y_1)$ and $B(x_2, y_2)$ and $AM: MB = \lambda$ $\left(\frac{AM}{MB} = \lambda\right)$, then:

$$M(x_{\lambda}, y_{\lambda}) \to x_{\lambda} = \frac{x_{1} + \lambda x_{2}}{1 + \lambda} \quad \text{and} \quad y_{\lambda} = \frac{y_{1} + \lambda y_{2}}{1 + \lambda}$$

$$M(x_{\lambda}, y_{\lambda})$$

$$A(x_{1}, y_{1})$$

$$B(x_{2}, y_{2})$$

3. How to find the middle of a longer AB

If the point $M(x_s, y_s)$ is the middle of AB $(A(x_1, y_1))$ and $B(x_2, y_2)$, then:

$$M(x_s, y_s) \to x_s = \frac{x_1 + x_2}{2}$$
 i $y_s = \frac{y_1 + y_2}{2}$

$$M(x_s, y_s)$$

$$A(x_1, y_1)$$

$$B(x_2, y_2)$$

Example 2.

focus of the triangle

First, we find the coordinates of point $A^*(x^*, y^*)$, middle of BC.

$$A*(x*, y*) \rightarrow x* = \frac{x_2 + x_3}{2}$$
 and $y* = \frac{y_2 + y_3}{2}$

Know that $AT : TA^* = 2 : 1 = 2$

$$T(x_T, y_T) \rightarrow x_T = \frac{x_1 + 2(\frac{x_2 + x_3}{2})}{1 + 2} = \frac{x_1 + x_2 + x_3}{3}$$
 and $y_T = \frac{y_1 + 2(\frac{y_2 + y_3}{2})}{1 + 2} = \frac{y_1 + y_2 + y_3}{3}$

4. Area of a triangle using the coordinates of vertices

 $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a triangle ABC, then:

$$A_{\Delta} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

or through determinants:

$$A_{\Delta} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Absolute value is there to provide us that a solution is not negative, because the area can not be a negative number.

Example 3.

Calculated area of a triangle ABC if A(-2,3); B(8,-2) and C(3,8)

$$A_{\triangle} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

$$A_{\triangle} = \frac{1}{2} |-2(-2 - 8) + 8(8 - 3) + 3(3 - (-2))|$$

$$A_{\triangle} = \frac{1}{2} |-2(-10) + 8 \cdot 5 + 3(3 + 2)|$$

$$A_{\triangle} = \frac{1}{2} |20 + 40 + 15|$$

$$A_{\triangle} = \frac{1}{2} |75|$$

$$A_{\triangle} = 37,5$$

i) general (implicit form) is ax + by + c = 0

ii) the **explicit form** is
$$y = kx + n$$

This form is our most important because it is used in many formulas.

k-direction ($k = tg\alpha$, where α is the angle that the line build with a positive direction of x - axis)

n - a segment on the y- axis

How to move from the general in explicit form?

$$ax + by + c = 0$$

$$by = -ax - c$$

$$y = -\frac{a}{b}x - \frac{c}{b}$$

$$k = -\frac{a}{h}$$
 and $n = -\frac{c}{h}$

Example 4.

7x+3y+23=0 transfer in explicit form and find k and n

$$7x + 3y + 23 = 0$$

$$3y = -7x - 23$$

$$y = -\frac{7}{3}x - \frac{23}{3}$$

$$k = -\frac{7}{3}$$
 and $n = -\frac{23}{3}$

iii)
$$\frac{x}{m} + \frac{y}{n} = 1$$
 the segment form

m - a segment on the x- axis

n - a segment on the y- axis

Example 5.

In equation px + (p+1)y - 8 = 0 find p, so that the segment of x- axis is two times higher than the segment of y-axis.

From the text of the task we can conclude that is m = 2n

$$px + (p+1)y - 8 = 0$$

$$px + (p+1)y = 8$$

$$\frac{px}{8} + \frac{(p+1)y}{8} = 1$$

$$\frac{x}{8} + \frac{y}{\frac{8}{p+1}} = 1 \rightarrow m = \frac{8}{p} \quad \text{and} \quad n = \frac{8}{p+1}$$

Substituting in m = 2n, we have:

$$m = 2n$$

$$\frac{8}{p} = 2 \cdot \frac{8}{p+1}$$

$$\frac{8}{p} = \frac{16}{p+1}$$

$$16p = 8(p+1)$$

$$16p = 8p + 8$$

$$16p - 8p = 8$$

$$p = 8$$

$$p = 1$$

iv) $x \cos \varphi + y \sin \varphi = p$ the normal form

In this equation is:

p is the normal distance from (0,0) to our line

 φ is the angle that the distance p build with positive direction of x- axis

The formula for the transition from the general to the normal form is:

$$ax + by + c = 0 \rightarrow \frac{ax + by + c}{\pm \sqrt{a^2 + b^2}} = 0$$

but careful, take sign in front of root as sign opposite the sign of c.

Example 6.

Reduce the equation 4x - 3y + 5 = 0 to normal form

$$4x-3y+5=0 \to \frac{4x-3y+5}{-\sqrt{4^2+3^2}} = 0 \quad (\text{-infront root because c=5})$$

$$\frac{4x-3y+5}{-\sqrt{25}} = 0 \to \frac{4x-3y+5}{-5} = 0 \to -\frac{4}{5}x + \frac{3}{5}y - 1 = 0 \quad \text{from here we have}$$

$$p=1, \quad \cos\varphi = -\frac{4}{5}, \quad \sin\varphi = \frac{3}{5}$$

- v) Line through the point $A(x_1, y_1)$ with the direction k is: $y y_1 = k(x x_1)$
- vi) Line through the point $A(x_1, y_1)$ and $B(x_2, y_2)$ is: $y y_1 = \frac{y_2 y_1}{x_2 x_1}(x x_1)$ Notes that $k = \frac{y_2 y_1}{x_2 x_1}$

What can be reciprocal position of two lines in the plane?

1) Can be cut

Intersection point found by solving the system of these two equations!

If we have $y = k_1 x + n_1$ and $y = k_2 x + n_2$ then the angle of cut is given by the formula:

$$tg\alpha = \left| \frac{k_2 - k_1}{1 + k_1 \cdot k_2} \right|$$

If the two lines cut at right angles, $k_1 \cdot k_2 = -1$ (normality condition)

2) can be parallel

 $y = k_1 x + n_1$ and $y = k_2 x + n_2$ are parallel if $k_1 = k_2$ (Condition parallels)

Example 7.

The vertices of the triangle are A(-5,-2), B(7,6), C(5,4). Find:

- a) equation of line AB
- b) equation of h_c
- c) the angle at the vertices A
- a) Use formula: Line through the point $A(x_1, y_1)$ and $B(x_2, y_2)$ is: $y y_1 = \frac{y_2 y_1}{x_2 x_1}(x x_1)$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y - (-2) = \frac{6 - (-2)}{7 - (-5)} (x - (-5))$$

$$y + 2 = \frac{6 + 2}{7 + 5} (x + 5)$$

$$y + 2 = \frac{8}{12} (x + 5)$$

$$y + 2 = \frac{2}{3} (x + 5)$$

$$y = \frac{2}{3} x + \frac{2}{3} \cdot 5 - 2$$

$$y = \frac{2}{3} x + \frac{10}{3} - \frac{6}{2}$$

$$y = \frac{2}{3} x + \frac{4}{3}$$
b)

The equation of line h_c we find as the equation of line through one point C (5,4) and his direction must satisfies the condition normality with the line AB

Direction of line AB: $y = \frac{2}{3}x + \frac{4}{3}$ is $k_1 = \frac{2}{3}$.

$$k_{2} = -\frac{1}{k_{1}}$$

$$y - y_{1} = k(x - x_{1})$$

$$y - 4 = -\frac{3}{2}(x - 5)$$

$$k_{2} = -\frac{1}{\frac{2}{3}}$$

$$y = -\frac{3}{2}x + \frac{15}{2} + 4$$

$$k_{2} = -\frac{3}{2}$$

$$y = -\frac{3}{2}x + \frac{23}{2}$$

c) The angle at the vertices of A is the angle between the line AB and AC.

$$tg\alpha = \left| \frac{k_2 - k_1}{1 + k_1 \cdot k_2} \right|$$

From line AB we have direction $k_1 = \frac{2}{3}$.

Direction of AC we will find:

A(-5,-2), C(5,4) change in
$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

$$k_2 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$k_2 = \frac{4 - (-2)}{5 - (-5)}$$

$$k_2 = \frac{6}{10}$$

$$k_2 = \frac{3}{5}$$

$$tg\alpha = \left| \frac{k_2 - k_1}{1 + k_1 \cdot k_2} \right| \rightarrow tg\alpha = \left| \frac{\frac{3}{5} - \frac{2}{3}}{1 + \frac{3}{5} \cdot \frac{2}{3}} \right| \rightarrow tg\alpha = \left| \frac{-\frac{1}{15}}{1 + \frac{6}{15}} \right| \rightarrow tg\alpha = \left| \frac{-\frac{1}{15}}{\frac{21}{15}} \right|$$

$$tg\alpha = \frac{1}{21}$$

$$\alpha = arctg \frac{1}{21}$$

strand of lines

If we have $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ two line equations that intersect at the point O, then:

$$A_1x + B_1y + C_1 + \lambda(A_2x + B_2y + C_2) = 0$$

So, to describe the strand of lines we need two lines!

Distance $A(x_1, y_1)$ from the line ax + by + c = 0 is given by formula:

$$d = \frac{\left| ax + by + c \right|}{\sqrt{a^2 + b^2}}$$

Example 8.

In $2x + y + 4 + \lambda(x - 2y - 3) = 0$ find line whose distance from point P(2, -3) is $\sqrt{10}$.

$$2x + y + 4 + \lambda(x - 2y - 3) = 0$$

$$2x + y + 4 + \lambda x - 2\lambda y - 3\lambda = 0$$

$$(2+\lambda)x + (1-2\lambda)y + 4 - 3\lambda = 0$$

From here, we have $a = 2 + \lambda$, $b = 1 - 2\lambda$

$$d = \frac{\left| ax + by + c \right|}{\sqrt{a^2 + b^2}}$$

$$d = \frac{\left| (2+\lambda) \cdot 2 + (1-2\lambda) \cdot (-3) + 4 - 3\lambda \right|}{\sqrt{(2+\lambda)^2 + (1-2\lambda)^2}}$$

$$\sqrt{10} = \frac{|4 + 2\lambda - 3 + 6\lambda + 4 - 3\lambda|}{\sqrt{4 + 4\lambda + \lambda^2 + 1 - 4\lambda + 4\lambda^2}}$$

$$\sqrt{10} = \frac{\left|5\lambda + 5\right|}{\sqrt{5\lambda^2 + 5}}$$

$$\lambda_1 =$$

From here we have two solutions:

$$\lambda_1 = 1$$

$$\lambda_2 = -\frac{9}{10}$$

Substituting this in $2x + y + 4 + \lambda(x - 2y - 3) = 0$ and we have:

$$3x - y + 1 = 0$$

$$11x + 28y + 67 = 0$$